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Abstract

The ComedAIn machine learning project was
made to process a user’s demographics and
return a set of jokes from the database based
on what the program decides would be most
enjoyable for the user. The algorithms used
in the program are Singular Value Decom-
position (SVD) and Random Forest. Vec-
tor Space and Neural Networks were also im-
plemented but not used in the final model.
When a user first uses the program, SVD
finds the suggested jokes based on the user’s
demographic input. Random Forest is then
used to better predict the user’s joke rat-
ing. Our result is generated from stacking
of random forest and SVD model by taking
the mean of those two models. We will dis-
play first 10 jokes to a new user based on
user profile and updated 10 new jokes each
time after a user rated the previous 10 jokes.
Our method could incorporate jokes inside
features, users’ profiles, and users’ responses
all at once, which leads to a better prediction.

1. Introduction

The ECS 171 Red Team is made up of 33 members di-
vided into 5 sub-teams. Throughout the project each
sub-team had specific tasks. The Project Manager
team successfully established communications through
Slack, delegated tasks to the other sub-teams through
Trello, and organized the project code on GitHub. The
Software Engineering team used Docker to deploy the
application on Azure. The project was created using
Jinja for the front end and Flask API to connect the
web application to the machine learning algorithms
and implement user functions. The data used in the
application was stored on a SQlite database connected
by the Flask API. The Machine Learning team focused
on implementhe ting SVD, Random Forest, Vector
Space, and Neural Network algorithms, deciding on

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

using SVD and Random Forest in the final project.
The Data Visualization team worked with the Soft-
ware Engineering team to implement the application
UI and the Machine Learning team to create plots of
the data. Lastly the Quality Assurance team focused
on reviewing code quality and helped with the final de-
bugging process. They also created a user experience
survey for feedback on the website’s design.

The SVD model gives really good prediction on the
first 10 jokes because it tends to present the jokes with
higher average joke rating which means jokes that ev-
eryone will like. There will be a drop of predicted
accuracy after the first 10 jokes but the accuracy will
increase as user rated more jokes. The drawback of
SVD model is that it does not consider the features
hide inside the jokes, such as joke type, length of the
joke, and so on. Random Forest Model will help to
adjust the feature inside jokes and user profile. We
will show the results for both methods.

The current approaches we had is that we just sim-
ply take mean of both methods, but did not find the
best combination of those two. For example, the SVD
model gives a really good prediction on the first 10
jokes and relative bad prediction on next 10 jokes
based on rating of the jokes. There should be a more
weight on SVD model for the first 10 jokes than for
the next 10 jokes rather than give it 50

This paper is mainly to present the methods we used in
SVD, Random Forest, Vector Space, and Neural Net-
work algorithms and corresponding results and analy-
sis. We try to explain the advantage and disadvantage
of each models and figure out why some model works
better than the others.

2. Methods

The main goal of our algorithm is to predict the rating
of jokes for a incoming new user and provide the user
the highest predicted joke ratings based on user’s pro-
file and his or her previous joke ratings. After a user
rates jokes, we can also predict a user’s missing pro-
file, like favorite joke type, favorite music genre, and
favorite movie genre based on a user’s joke preference.

Multiple methods including SVD, Random Forest,
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Vector Space, and Neural Network were used, and we
will compare the accuracy of the prediction using ROC
curve and MSE in next section.

Because of the fact that different models have different
strengths, we will apply stacking method to predict our
user rating based on multiple models.

2.1. Singular Value decomposition(SVD)

Singular value decomposition is a method of finding
the rank-k approximation of a matrix. We utilize this
method to find suggested jokes by first creating a ma-
trix which contains all users’ features and all of their
joke rankings (one column per joke, one row per user).
With this matrix, we can input the query vector for a
given user that has not rated all jokes into this matrix,
then decompose it using SVD to a rank-k approxima-
tion. This new rank-k matrix will fill in the missing
ratings with what it ”believes” or approximates the
ratings to be. The new values in this approximated
matrix are our estimate for the user’s ratings per joke;
we use these estimated ratings to find the joke not al-
ready rated with the highest rating. In the meantime,
if a user failed to input any missing user information
like favorite joke type, favorite music genre, and fa-
vorite movie genre, SVD will provide an estimate of
the user features.

(Figure 1)

In our case, the Matrix A in Figure 1 is our original
matrix, each row is corresponding to a joke ID and
first 11 columns are user features and from 12 to the
last column corresponds to a user ID.

SVD will decompose the Matrix A into 2 singular vec-
tor U and V T and a Singular Diagonal Value S. U and
V represent the direction of our features and S rep-
resent the magnitude to each directions. We pick the
sort the singular value and pick the 10 largest (k=10)
singular value to reproduce our matrix A‘ which is the
approximation of matrix A. In our model, estimated
A‘contains 85% information of original matrix A.

When a new user comes in, we will add a new row in
matrix A containing user information only and initial
rating of all jokes 0. After doing SVD, we get the

estimated A‘ and from A‘, we can get the estimated
rating of each jokes for that user. After user rated the
jokes, the new row in the matrix A will be updated
with more information about jokes rating and have
more accurate prediction next step.

The advantage of SVD is that it provides approxi-
mated rating on all jokes and is robust to noise in
the data, as it is dimensional reduction.

There are also some disadvantages. It will be skewed
towards more popular jokes; to counteract this we nor-
malize each row to mitigate differences in ”user av-
erage rating” and normalize each column to mitigate
differences in ”average rating per joke”. This is also
completely a collaboration filter model, so it does not
take into account any sort of features on the jokes,
which we are currently trying to resolve with a vector
space model. In the meantime, the computationally
complex is O(m3), however, with a dataset of our size,
this should not be an issue. For scalability and larger
datasets, an iterative SVD approach could be imple-
mented. We have to choose an optimal k-value for the
approximation, which may be hard to find. The ap-
proach we are currently looking at is empirically find a
k which retains 85% of the original dataset’s variance.

2.2. Random Forest

Random forest6 is an ensemble method that builds
multiple decision trees to increase prediction accuracy.
Our model random forest will create a set of random
decision trees. Each tree will be something like the
Figure 2 below,

(Figure 25)

We created 50 trees to train the model, with min-
imizing the square root error methods. After do-
ing feature selections with lasso, our Random Forest
model also include additional features from our feature
teams, such as ’ave character’, ’ave word’, features
from TFIDF 1,2,3 and so on. Detailed description of
additional features as well as exploratory analysis on
features from Data Management Team will be in the
supplementary file.
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The main disadvantage for decision trees is overfitting,
but random forests bypass this by using samples of the
data to build multiple trees. The regressor uses nu-
merical and categorical (transformed into one-hot vec-
tors) variables to output a continuous predicted score
between 1 and 5. Random forests can also output vari-
able importances, and say which variables were most
helpful in the prediction. Disadvantages would be that
this method does not predict as high as neural net-
works.

In the end, we picked numerical Random Forest Re-
gressor due to better predictability.

2.3. Vector space (Did not implement it in our
final model)

Vector space models are designed to take in a vector
comprised of the user features and their rated jokes
and run a K −Means8,10 on it to receive back a clus-
tering of these users. Then for the new user, we asso-
ciate them with one of the clusters and return a list of
jokes that have not been seen (voted) yet.

As an output, the algorithm returns a list of vectors
for the new user. The vector contains the list of users
in the cluster that the new user is in. From there, we
can just pull out the jokes that were rated highly by
all the users in the cluster and recommend it to the
new user.

The advantage of this model is that it provides recom-
mendations based on other users and gives an accurate
association between the likeability of a joke and the
user. It has the potential for active learning. The dis-
advantage of this model is that there are not enough
users to give an efficient clustering given many joke
features. That is the reason why it did not perform
really well and we will discuss its results later on.

2.4. Artificial Neural Network(Did not
implement it in our final model)

We used the Keras Sequential Model to construct the
Artificial Neural Network. The model we chose used
Adam as the optimizer and MSE as the loss func-
tion. The input layer has 35 input nodes, one for
each user attribute (gender, age, etc. as well as indi-
cator/”dummy” variables for each category when ap-
plicable). The features we selected were preprocessed
as follows:

• Data normalization: We normalized the age at-
tribute to be between 0 and 1 (subtract each value
by the minimum age and divide by the range).

• Feature Selection: We decided not to use the fea-

tures of favorite movie genre or favorite music
genre as there no significant benefit to the model’s
prediction accuracy by using them.

• Dimensionality reduction: We merged certain ma-
jors and birth countries (e.g. combining ”Com-
puter Engineer”, ”Computer Engineering”, ”Elec-
trical Engineering” into one ”CE/EE” value), re-
ducing major to 4 possible values and birth coun-
try to 3 different values.

Assuming only user features are used as input nodes,
there are 2 hidden layers with 10 nodes each. The
number of hidden layer nodes must increase as the
number of input nodes increases, so as the rater rates
more jokes, the number of input layer and hidden layer
nodes increase while the number of nods in the output
layer decreases. We used ReLU activation function for
the first two layers (input to hidden 1, and hidden 1
to hidden 2), and sigmoid as our activation function
from the second hidden layer to the output layer.

The output layer has 153 output nodes: one for each
joke, with the output of each node being the predicted
rating for that joke. Finally, our model was trained us-
ing 0.2 as the validation split (meaning 80% for train-
ing and 20% for testing). We used 100 epochs and the
default batch size of 32.

3. Results

The final model takes the average of predicted rating
from SVD and Random forest to get a estimated score
when a new user comes in and starts rating. SVD and
Random Forest both worked well in terms of predicting
the joke rating. We will present the ROC curve for
both models. We will also present our finding in other
two models, ANN and Vector Space.

3.1. Random Forest and SVD

By setting 1 as joke rating bigger than 3 and 0 as
joke rating smaller 3, we were able to check the ROC
curve given predicted rating and actual rating from
both SVD and Random Forest model.

Note: SVD model goes through each user one by one
and find all their predicted rating. Random Forest
train model with 70% of users and test it with the
rest 30% result and we provide the ROC curve of test
dataset‘s result.

Like what we showed in Figure 3, we can see that
ROC curve for first 10 jokes using SVD gives a very
high AUC, 0.87. The AUC for the rest jokes dropped
and goes back as user rated more jokes. It reach a very
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high level. The Random Forest model gives a relative
small AUC but still bigger than 0.5.

• Area under the curve for first 10 jokes
0.870321229685

• Area under the curve for first 30 jokes
0.713208820865

• Area under the curve for first 50 jokes
0.721264493532

• Area under the curve for first 70 jokes
0.761003014939

• Area under the curve for first 90 jokes
0.849750052732

• Area under the curve for random forest
0.608031285545

(Figure 3)

For Random Forest, we also checked the numerical
rating comparison between actual score and predicted
score, shown in the Figure 4 below. In the x-axis it
shows actual joke rating from 1 to 5. In the y axis, it
shows predicted score from 0 to 5. We also plotted the
fitted line for two type of scores.

(Figure 4)

In the Figure 5 below, it shows the top 15 importances
of features in terms predicting the joke rating using
Random Forest.

(Figure 5)

3.2. Vector Space model

For Vector Space model, we compared the total error
of our algorithm with the total error of an algorithm
that randomly recommended jokes to the user. This
gives us a ratio to determine how much better our
algorithm performs than just randomly recommending
users jokes. The closer to 0 the ratio is, the better our
algorithm performs, since there are less errors in our
algorithm than the errors of just randomly guessing.
Getting a ratio of 1 means that our algorithm is as bad
as randomly recommending jokes. Most of our tests
resulted in greater than a .5 ratio and the average was
0.689763373.

The Figure 6 below shows the medians (Q1,Q2,Q3) of
the total error of our algorithm divided by the total er-
ror of an algorithm that randomly recommended jokes
to the user. It also gives the mean of that. It seems
that 75% of the ratios lie above .56.

(Figure 6)
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3.3. ANN

For ANN, our model was trained using 0.2 as the val-
idation split, meaning 80% for training and 20% for
testing.

The Figure 7 below from both the Rate of Change plot
of our ANN model. As labeled, the blue line represents
the accuracy as the number of input rating features
increase for the training set, and the orange line rep-
resents the same for the testing set. Note: the features
number increased as the user rated more jokes.

(Figure 7)

4. Discussion

Our final model is combining SVD and Random Forest
to predict joke ratings. We will discuss why ANN and
Vector Space model failed and the credibility of our
final models.

4.1. SVD and Random Forest

The SVD provide a really good prediction on the first
10 jokes and the accuracy when down after that but
goes back each times rater rated more jokes. Random
Forest gives a comparable small AUC of 0.6 which is
still better than random guess. The reason why it
predicts perform less accurate is that it does not take
the mean rating of each joke into account. That is
why it had some hard time finding the ”popular jokes”.
However, the model is purely focused on the features
of user and jokes, which gives our model a different
aspect of the picture. We believe that after combining
with SVD model, it could incorporate both aspect of
popularity and jokes‘s feature in our final model. The
proportion of those two models need to be consider in
the next step, but we did not included in this paper.

Overall, both SVD and Random Forest gives a very

good predictions and we can present user the jokes
they will like.

4.2. ANN and Vector Space

We decide to reject Vector Space Model and ANN
model.

For Vector space model: after finding the ratio of
the total error of our algorithm divided by the to-
tal error of an algorithm that randomly recommended
jokes to the user, the Figure above shows the medi-
ans (Q1,Q2,Q3) of the ratios and 75% of the ratios lie
above .56, which is not a good indication for our pre-
diction accuracies. Most of our tests resulted in greater
than a .5 ratio and the average was 0.689763373, which
meant that our algorithm is close to being as bad as
randomly recommending jokes. We decide to reject
this Vector Space model.

The reason why it failed may because we have not
enough users to give an efficient clustering given many
joke features. We could improve our model when there
are more raters that rated our jokes.

For ANN model, the accuracy plots in Figure shows
that for both training and test, there was a really low
accuracy. As more features came in, the accuracy went
up a little but still at a very low level of about 10%.

The reason why it failed was because of dimension-
ality and retraining. Similar like Vector space model,
ANNs require a lot of training data, especially for high-
dimensional feature space. As the user rates more
jokes, the feature space dimension increases for that
user. The number of features may even exceed the
number of data samples. Also after a user rates a
joke, the user’s rating for that joke becomes a new
input node for the ANN of that user, and the joke
is removed from the output node. This results in a
new model with a different number of input and out-
put nodes. Thus the ANN would have to be retrained
each time.
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weighting. Designed certain aspects of the model
architecture. Solved critical bugs in the ML im-
plementation.

6.4. Quality Assurance

1. Matthew Corbelli (mdcorbelli@ucdavis.edu):
In charge of testing code and searching for bugs
in the application

2. Akshay Kumar (thekumar@ucdavis.edu):
In charge of ensuring a quality standard through-
out all of the project’s code

6.5. Project Management

1. Kai Jin (kchjin@ucdavi.edu):
In charge of managing machine learning team.
Also contributed to the project reports and pre-
sentations.

2. Carson Dacus (cbdacus@ucdavis.edu):
In charge of managing the quality assurance team.
Also contributed to the project reports and pre-
sentations.

3. Stephan Zharkov (sdzharkov@ucdavis.edu):
In charge of managing the software engineering
team. Set up the initial architecture of the project
such as the initial design and database setup.
Controlled all pull requests made on Github to
avoid conflicts, and heavily tested code. Worked
on multiple features and the final utilization of
ML algorithms. Also contributed to the project
reports and presentations.

4. Melody Chang (mccchang@ucdavis.edu):
In charge of managing the data visualization
team. Also contributed to the project reports and
presentations, wrote the entire final report in La-
TeX.


