
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

ECS 171 Red Team Project Report

Abstract

The ComedAIn machine learning project was
made to process a user’s demographics and
return a set of jokes from the database based
on what the program decides would be most
enjoyable for the user. The algorithms used
in the program are Singular Value Decom-
position (SVD) and Random Forest. Vec-
tor Space and Neural Networks were also im-
plemented but not used in the final model.
When a user first uses the program, SVD
finds the suggested jokes based on the user’s
demographic input. Random Forest is then
used to better predict the user’s joke rat-
ing. Our result is generated from stacking
of random forest and SVD model by taking
the mean of those two models. We will dis-
play first 10 jokes to a new user based on
user profile and updated 10 new jokes each
time after a user rated the previous 10 jokes.
Our method could incorporate jokes inside
features, users’ profiles, and users’ responses
all at once, which leads to a better prediction.

1. Introduction

The ECS 171 Red Team is made up of 33 members di-
vided into 5 sub-teams. Throughout the project each
sub-team had specific tasks. The Project Manager
team successfully established communications through
Slack, delegated tasks to the other sub-teams through
Trello, and organized the project code on GitHub. The
Software Engineering team used Docker to deploy the
application on Azure. The project was created using
Jinja for the front end and Flask API to connect the
web application to the machine learning algorithms
and implement user functions. The data used in the
application was stored on a SQlite database connected
by the Flask API. The Machine Learning team focused
on implementhe ting SVD, Random Forest, Vector
Space, and Neural Network algorithms, deciding on

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

using SVD and Random Forest in the final project.
The Data Visualization team worked with the Soft-
ware Engineering team to implement the application
UI and the Machine Learning team to create plots of
the data. Lastly the Quality Assurance team focused
on reviewing code quality and helped with the final de-
bugging process. They also created a user experience
survey for feedback on the website’s design.

The SVD model gives really good prediction on the
first 10 jokes because it tends to present the jokes with
higher average joke rating which means jokes that ev-
eryone will like. There will be a drop of predicted
accuracy after the first 10 jokes but the accuracy will
increase as user rated more jokes. The drawback of
SVD model is that it does not consider the features
hide inside the jokes, such as joke type, length of the
joke, and so on. Random Forest Model will help to
adjust the feature inside jokes and user profile. We
will show the results for both methods.

The current approaches we had is that we just sim-
ply take mean of both methods, but did not find the
best combination of those two. For example, the SVD
model gives a really good prediction on the first 10
jokes and relative bad prediction on next 10 jokes
based on rating of the jokes. There should be a more
weight on SVD model for the first 10 jokes than for
the next 10 jokes rather than give it 50

This paper is mainly to present the methods we used in
SVD, Random Forest, Vector Space, and Neural Net-
work algorithms and corresponding results and analy-
sis. We try to explain the advantage and disadvantage
of each models and figure out why some model works
better than the others.

2. Methods

The main goal of our algorithm is to predict the rating
of jokes for a incoming new user and provide the user
the highest predicted joke ratings based on user’s pro-
file and his or her previous joke ratings. After a user
rates jokes, we can also predict a user’s missing pro-
file, like favorite joke type, favorite music genre, and
favorite movie genre based on a user’s joke preference.

Multiple methods including SVD, Random Forest,



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Red Team Project Report

Vector Space, and Neural Network were used, and we
will compare the accuracy of the prediction using ROC
curve and MSE in next section.

Because of the fact that different models have different
strengths, we will apply stacking method to predict our
user rating based on multiple models.

2.1. Singular Value decomposition(SVD)

Singular value decomposition is a method of finding
the rank-k approximation of a matrix. We utilize this
method to find suggested jokes by first creating a ma-
trix which contains all users’ features and all of their
joke rankings (one column per joke, one row per user).
With this matrix, we can input the query vector for a
given user that has not rated all jokes into this matrix,
then decompose it using SVD to a rank-k approxima-
tion. This new rank-k matrix will fill in the missing
ratings with what it ”believes” or approximates the
ratings to be. The new values in this approximated
matrix are our estimate for the user’s ratings per joke;
we use these estimated ratings to find the joke not al-
ready rated with the highest rating. In the meantime,
if a user failed to input any missing user information
like favorite joke type, favorite music genre, and fa-
vorite movie genre, SVD will provide an estimate of
the user features.

(Figure 1)

In our case, the Matrix A in Figure 1 is our original
matrix, each row is corresponding to a joke ID and
first 11 columns are user features and from 12 to the
last column corresponds to a user ID.

SVD will decompose the Matrix A into 2 singular vec-
tor U and V T and a Singular Diagonal Value S. U and
V represent the direction of our features and S rep-
resent the magnitude to each directions. We pick the
sort the singular value and pick the 10 largest (k=10)
singular value to reproduce our matrix A‘ which is the
approximation of matrix A. In our model, estimated
A‘contains 85% information of original matrix A.

When a new user comes in, we will add a new row in
matrix A containing user information only and initial
rating of all jokes 0. After doing SVD, we get the

estimated A‘ and from A‘, we can get the estimated
rating of each jokes for that user. After user rated the
jokes, the new row in the matrix A will be updated
with more information about jokes rating and have
more accurate prediction next step.

The advantage of SVD is that it provides approxi-
mated rating on all jokes and is robust to noise in
the data, as it is dimensional reduction.

There are also some disadvantages. It will be skewed
towards more popular jokes; to counteract this we nor-
malize each row to mitigate differences in ”user av-
erage rating” and normalize each column to mitigate
differences in ”average rating per joke”. This is also
completely a collaboration filter model, so it does not
take into account any sort of features on the jokes,
which we are currently trying to resolve with a vector
space model. In the meantime, the computationally
complex is O(m3), however, with a dataset of our size,
this should not be an issue. For scalability and larger
datasets, an iterative SVD approach could be imple-
mented. We have to choose an optimal k-value for the
approximation, which may be hard to find. The ap-
proach we are currently looking at is empirically find a
k which retains 85% of the original dataset’s variance.

2.2. Random Forest

Random forest6 is an ensemble method that builds
multiple decision trees to increase prediction accuracy.
Our model random forest will create a set of random
decision trees. Each tree will be something like the
Figure 2 below,

(Figure 25)

We created 50 trees to train the model, with min-
imizing the square root error methods. After do-
ing feature selections with lasso, our Random Forest
model also include additional features from our feature
teams, such as ’ave character’, ’ave word’, features
from TFIDF 1,2,3 and so on. Detailed description of
additional features as well as exploratory analysis on
features from Data Management Team will be in the
supplementary file.



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Red Team Project Report

The main disadvantage for decision trees is overfitting,
but random forests bypass this by using samples of the
data to build multiple trees. The regressor uses nu-
merical and categorical (transformed into one-hot vec-
tors) variables to output a continuous predicted score
between 1 and 5. Random forests can also output vari-
able importances, and say which variables were most
helpful in the prediction. Disadvantages would be that
this method does not predict as high as neural net-
works.

In the end, we picked numerical Random Forest Re-
gressor due to better predictability.

2.3. Vector space (Did not implement it in our
final model)

Vector space models are designed to take in a vector
comprised of the user features and their rated jokes
and run a K −Means8,10 on it to receive back a clus-
tering of these users. Then for the new user, we asso-
ciate them with one of the clusters and return a list of
jokes that have not been seen (voted) yet.

As an output, the algorithm returns a list of vectors
for the new user. The vector contains the list of users
in the cluster that the new user is in. From there, we
can just pull out the jokes that were rated highly by
all the users in the cluster and recommend it to the
new user.

The advantage of this model is that it provides recom-
mendations based on other users and gives an accurate
association between the likeability of a joke and the
user. It has the potential for active learning. The dis-
advantage of this model is that there are not enough
users to give an efficient clustering given many joke
features. That is the reason why it did not perform
really well and we will discuss its results later on.

2.4. Artificial Neural Network(Did not
implement it in our final model)

We used the Keras Sequential Model to construct the
Artificial Neural Network. The model we chose used
Adam as the optimizer and MSE as the loss func-
tion. The input layer has 35 input nodes, one for
each user attribute (gender, age, etc. as well as indi-
cator/”dummy” variables for each category when ap-
plicable). The features we selected were preprocessed
as follows:

• Data normalization: We normalized the age at-
tribute to be between 0 and 1 (subtract each value
by the minimum age and divide by the range).

• Feature Selection: We decided not to use the fea-

tures of favorite movie genre or favorite music
genre as there no significant benefit to the model’s
prediction accuracy by using them.

• Dimensionality reduction: We merged certain ma-
jors and birth countries (e.g. combining ”Com-
puter Engineer”, ”Computer Engineering”, ”Elec-
trical Engineering” into one ”CE/EE” value), re-
ducing major to 4 possible values and birth coun-
try to 3 different values.

Assuming only user features are used as input nodes,
there are 2 hidden layers with 10 nodes each. The
number of hidden layer nodes must increase as the
number of input nodes increases, so as the rater rates
more jokes, the number of input layer and hidden layer
nodes increase while the number of nods in the output
layer decreases. We used ReLU activation function for
the first two layers (input to hidden 1, and hidden 1
to hidden 2), and sigmoid as our activation function
from the second hidden layer to the output layer.

The output layer has 153 output nodes: one for each
joke, with the output of each node being the predicted
rating for that joke. Finally, our model was trained us-
ing 0.2 as the validation split (meaning 80% for train-
ing and 20% for testing). We used 100 epochs and the
default batch size of 32.

3. Results

The final model takes the average of predicted rating
from SVD and Random forest to get a estimated score
when a new user comes in and starts rating. SVD and
Random Forest both worked well in terms of predicting
the joke rating. We will present the ROC curve for
both models. We will also present our finding in other
two models, ANN and Vector Space.

3.1. Random Forest and SVD

By setting 1 as joke rating bigger than 3 and 0 as
joke rating smaller 3, we were able to check the ROC
curve given predicted rating and actual rating from
both SVD and Random Forest model.

Note: SVD model goes through each user one by one
and find all their predicted rating. Random Forest
train model with 70% of users and test it with the
rest 30% result and we provide the ROC curve of test
dataset‘s result.

Like what we showed in Figure 3, we can see that
ROC curve for first 10 jokes using SVD gives a very
high AUC, 0.87. The AUC for the rest jokes dropped
and goes back as user rated more jokes. It reach a very



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Red Team Project Report

high level. The Random Forest model gives a relative
small AUC but still bigger than 0.5.

• Area under the curve for first 10 jokes
0.870321229685

• Area under the curve for first 30 jokes
0.713208820865

• Area under the curve for first 50 jokes
0.721264493532

• Area under the curve for first 70 jokes
0.761003014939

• Area under the curve for first 90 jokes
0.849750052732

• Area under the curve for random forest
0.608031285545

(Figure 3)

For Random Forest, we also checked the numerical
rating comparison between actual score and predicted
score, shown in the Figure 4 below. In the x-axis it
shows actual joke rating from 1 to 5. In the y axis, it
shows predicted score from 0 to 5. We also plotted the
fitted line for two type of scores.

(Figure 4)

In the Figure 5 below, it shows the top 15 importances
of features in terms predicting the joke rating using
Random Forest.

(Figure 5)

3.2. Vector Space model

For Vector Space model, we compared the total error
of our algorithm with the total error of an algorithm
that randomly recommended jokes to the user. This
gives us a ratio to determine how much better our
algorithm performs than just randomly recommending
users jokes. The closer to 0 the ratio is, the better our
algorithm performs, since there are less errors in our
algorithm than the errors of just randomly guessing.
Getting a ratio of 1 means that our algorithm is as bad
as randomly recommending jokes. Most of our tests
resulted in greater than a .5 ratio and the average was
0.689763373.

The Figure 6 below shows the medians (Q1,Q2,Q3) of
the total error of our algorithm divided by the total er-
ror of an algorithm that randomly recommended jokes
to the user. It also gives the mean of that. It seems
that 75% of the ratios lie above .56.

(Figure 6)



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Red Team Project Report

3.3. ANN

For ANN, our model was trained using 0.2 as the val-
idation split, meaning 80% for training and 20% for
testing.

The Figure 7 below from both the Rate of Change plot
of our ANN model. As labeled, the blue line represents
the accuracy as the number of input rating features
increase for the training set, and the orange line rep-
resents the same for the testing set. Note: the features
number increased as the user rated more jokes.

(Figure 7)

4. Discussion

Our final model is combining SVD and Random Forest
to predict joke ratings. We will discuss why ANN and
Vector Space model failed and the credibility of our
final models.

4.1. SVD and Random Forest

The SVD provide a really good prediction on the first
10 jokes and the accuracy when down after that but
goes back each times rater rated more jokes. Random
Forest gives a comparable small AUC of 0.6 which is
still better than random guess. The reason why it
predicts perform less accurate is that it does not take
the mean rating of each joke into account. That is
why it had some hard time finding the ”popular jokes”.
However, the model is purely focused on the features
of user and jokes, which gives our model a different
aspect of the picture. We believe that after combining
with SVD model, it could incorporate both aspect of
popularity and jokes‘s feature in our final model. The
proportion of those two models need to be consider in
the next step, but we did not included in this paper.

Overall, both SVD and Random Forest gives a very

good predictions and we can present user the jokes
they will like.

4.2. ANN and Vector Space

We decide to reject Vector Space Model and ANN
model.

For Vector space model: after finding the ratio of
the total error of our algorithm divided by the to-
tal error of an algorithm that randomly recommended
jokes to the user, the Figure above shows the medi-
ans (Q1,Q2,Q3) of the ratios and 75% of the ratios lie
above .56, which is not a good indication for our pre-
diction accuracies. Most of our tests resulted in greater
than a .5 ratio and the average was 0.689763373, which
meant that our algorithm is close to being as bad as
randomly recommending jokes. We decide to reject
this Vector Space model.

The reason why it failed may because we have not
enough users to give an efficient clustering given many
joke features. We could improve our model when there
are more raters that rated our jokes.

For ANN model, the accuracy plots in Figure shows
that for both training and test, there was a really low
accuracy. As more features came in, the accuracy went
up a little but still at a very low level of about 10%.

The reason why it failed was because of dimension-
ality and retraining. Similar like Vector space model,
ANNs require a lot of training data, especially for high-
dimensional feature space. As the user rates more
jokes, the feature space dimension increases for that
user. The number of features may even exceed the
number of data samples. Also after a user rates a
joke, the user’s rating for that joke becomes a new
input node for the ANN of that user, and the joke
is removed from the output node. This results in a
new model with a different number of input and out-
put nodes. Thus the ANN would have to be retrained
each time.

5. References

1. Using TF-IDF to Determine Word Relevance in
Document Queries, Juan Ramos, 2003 (Used in
supplementary file)

2. NLTK documentation, http://www.nltk.org
(Used in supplementary file)

3. Stanford Natural Language Processing group,
https://nlp.stanford.edu/software/ (Used
in supplementary file)

4. DATA 643 Project 3, Logan Thom-

https://nlp.stanford.edu/software/


550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Red Team Project Report

son, June 24 2017 https://

rstudio-pubs-static.s3.amazonaws.com/

287384_361b4e0daf5648fcafb404cade2e2bc1.

htm

5. Random Forests in Python, June 5, 2013

6. Introduction to Random forest, Raghav Aggiwal,
Feb 28, 2017

7. Pytrends, https://github.com/GeneralMills/

pytrends (Used in supplementary file)

8. Exploiting User Demographic Attributes for Solv-
ing Cold-Start Problem in Recommender System
, Laila Safoury and Akram Salah , August 2013

9. Recommendation Systems, Jeffrey D. Ullman
http://infolab.stanford.edu/~ullman/

mmds/ch9.pdf

10. Comparing Python Clustering Algorithms, Le-
land McInnes, John Healy, Steve Astels, 2016
http://hdbscan.readthedocs.io/en/latest/

comparing_clustering_algorithms.html

6. Author Contributions

6.1. Machine Learning Team

6.1.1. Algorithms

1. Kurt Schneider (kmsch@ucdavis.edu):
Leader of algorithm group. In charge of com-
municating between groups, building SVD model,
stacking SVD and Random Forest, holding Algo-
rithm meeting, keeping records of meetings. SVD
is included in our final model and provided a de-
tailed description of the model.

2. Ari Schoenfeld (abschoenfeld@ucdavis.edu):
In charge of building SVD model. Included in our
final model and provided a detailed description of
the model.

3. Megha Jain (mrjain@ucdavis.edu):
In charge of building ALS model, but couldn‘t get
results out because of some bugs and ALS model
is not included in this paper.

4. Cynthia Lai (cynlai@ucdavis.edu):
In charge of building Random Forest. She also
provided a lot of great materials and paper to read
and start collecting and braining storming ideas of
algorithms. She also incorporated active learning,
feature team’s features, and data cleaning (nans,
low variance) in the Random Forest.

5. Allen Speers (atspeers@ucdavis.edu):
In charge of building vector space model. Vec-
tor space is not included in our final model but
he provided a detailed description and the reason
why it fails.

6. Richard Hou (rhhou@ucdavis.edu):
In charge of building Random Forest model. Ran-
dom Forest is included in our final model and he
provided a detailed description of the model.

7. Jason Liu (jymliu@ucdavis.edu):
In charge of building ANN. ANN is not included
in our final model but he provided a detailed de-
scription and the reason why it fails.

8. Melanie Zhang (mlnzhang@ucdavis.edu):
In charge of building ANN. ANN is not included
in our final model but he provided a detailed de-
scription and the reason why it fails.

9. Calvin Huang (calhuang@ucdavis.edu):
In charge of building vector space model. Vec-
tor space is not included in our final model but
he provided a detailed description and the reason
why it fails.

6.1.2. Features

1. Sailesh Patnala (sgpatnala@ucdavis.edu):
Leader of feature group, in charge of NLP, holding
Feature meeting, communicating with software
engineer team to implements Machine Learning
algorithm with our backends. That was a lot of
works and he did a great job on it.

2. Joe Akanesuvan (kakanesuvan@ucdavis.edu):
In charge of finding trending locations of the key-
words in joke text, used the list of keywords
extracted from Sailesh’s NLP and used Google
Trends API to get trending location from key-
words.

3. Chia-Hui Shen (chshen@ucdavis.edu):
In charge of doing TF-IDF. Also she did NLP and
found number of words in sentences and average
number of character in words. She is very active
in our team and get things done very fast.

4. Jonas Lum (jmlum@ucdavis.edu):
In charge of combining features and found poten-
tial ideas of data cleaning.

5. Sadegh Shamsabardeh
(mshamsabardeh@ucdavis.edu):
In charged of finding std Deviation of the joke,
determine decisiveness of the joke and normalized
rating based on users.

https://rstudio-pubs-static.s3.amazonaws.com/287384_361b4e0daf5648fcafb404cade2e2bc1.htm
https://rstudio-pubs-static.s3.amazonaws.com/287384_361b4e0daf5648fcafb404cade2e2bc1.htm
https://rstudio-pubs-static.s3.amazonaws.com/287384_361b4e0daf5648fcafb404cade2e2bc1.htm
https://rstudio-pubs-static.s3.amazonaws.com/287384_361b4e0daf5648fcafb404cade2e2bc1.htm
https://github.com/GeneralMills/pytrends
https://github.com/GeneralMills/pytrends
http://infolab.stanford.edu/~ullman/mmds/
http://infolab.stanford.edu/~ullman/mmds/
http://hdbscan.readthedocs.io/en/latest/comparing_clustering_algorithms.html
http://hdbscan.readthedocs.io/en/latest/comparing_clustering_algorithms.html


660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Red Team Project Report

6.2. Data Visualization

1. Felix Le (fple@ucdavis.edu):
In charge of making the data visualizations

2. Injung Ahn (injahn@ucdavis.edu):
In charge of making the data visualizations

3. Anthony Ho (aawho@ucdavis.edu):
In charge of making the data visualizations

6.3. Software Engineering

1. Andres Sanchez (anisanchez@ucdavis.edu):
Updating the routing mechanism for the website
and created multiple pages on the side. In charge
of many features in the beginning of the process.

2. Maurice Dela Fuente (mdelafuente@ucdavis.edu):
Worked heavily with other engineers during the
setup process to insure a clean architecture.
Found and solved bugs in the system.

3. Matthew Kyawmyint (mmyint@ucdavis.edu):
Led the home page implementation effort, and
solved critical bugs on the application. Refactored
critical SVD code into a class for easier under-
standing.

4. Eden Bernabe (eabernabe@ucdavis.edu):
Worked together alongside other engineers on the
feature development process. Found and solved
bugs in the system.

5. Jason Hui (jashui@ucdavis.edu):
Moved the database classes into the codebase and
created models. Perfected our database expe-
rience and heavily worked alongside other engi-
neers.

6. Bryan Kim (bjkim@ucdavis.edu):
Worked on building multiple features alongside
other engineers. Built a ’Guess Me’ feature and
kept our packages updated.

7. Alex Derebenskiy (avderebenskiy@ucdavis.edu):
Implemented multiple features on the site, in-
cluding showing the previous joke ratings of a
user. Worked on other fixes such as moving our
database to a specific encoding.

8. Jisoo Yun (jisyun@ucdavis.edu):
Led all deployment efforts of the project. Dock-
erized the application and put it onto an Azure
server. Refactored code to work with Docker.

9. Daniel Velasquez (dpvelasquez@ucdavis.edu):
Built some of the most difficult features on the

site, including the entire joke page. This included
automatic joke fetching and showing likelihood
weighting. Designed certain aspects of the model
architecture. Solved critical bugs in the ML im-
plementation.

6.4. Quality Assurance

1. Matthew Corbelli (mdcorbelli@ucdavis.edu):
In charge of testing code and searching for bugs
in the application

2. Akshay Kumar (thekumar@ucdavis.edu):
In charge of ensuring a quality standard through-
out all of the project’s code

6.5. Project Management

1. Kai Jin (kchjin@ucdavi.edu):
In charge of managing machine learning team.
Also contributed to the project reports and pre-
sentations.

2. Carson Dacus (cbdacus@ucdavis.edu):
In charge of managing the quality assurance team.
Also contributed to the project reports and pre-
sentations.

3. Stephan Zharkov (sdzharkov@ucdavis.edu):
In charge of managing the software engineering
team. Set up the initial architecture of the project
such as the initial design and database setup.
Controlled all pull requests made on Github to
avoid conflicts, and heavily tested code. Worked
on multiple features and the final utilization of
ML algorithms. Also contributed to the project
reports and presentations.

4. Melody Chang (mccchang@ucdavis.edu):
In charge of managing the data visualization
team. Also contributed to the project reports and
presentations, wrote the entire final report in La-
TeX.


